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A general strategy is proposed for generating the eigenvectors and the eigenvalues of some 
special classes of graphs from the well-known chemical graphs such as lines and cycles which 
are isomorphic to the hydrogen-suppressed linear and cyclic polyenes. This method is applied 
to step graphs, ladders, cylinders, etc. Net sign analyses are then performed for all these special 
classes of graphs. 

1. Introduction 

During the last two decades, there has been a growing interest in the application 
of graph theory to topological analysis of external [1] and internal [2] connectiv- 
ities of chemical graphs. The research activities in this field have been extended to 
various fields of chemistry, such as organic conjugated systems [3], organometal- 
lics [4], clusters [5], drug research and design [6], heterocyclic compounds [7], iso- 
mer enumeration [8], the quantitative-structure-activity relationship [9], toxicity 
studies [ 10], etc. Applications of graph theory to molecular orbital theory have also 
been advanced by Gutman et al. [11]. However, some fundamental studies concern- 
ing the internal connectivity of molecular orbital graphs [12] are still of interest. 
In this paper we have applied a general strategy proposed by the authors [13] for 
generating the eigenvectors and eigenvalues of some special classes of graphs from 
well-studied chemical graphs, e.g. lines and cycles which are isomorphic to linear 
and cyclic polyenes. This strategy was successfully applied to the class of hyper- 
cubes [14] which are direct products of a series of complete graphs of order 2, K2, 
the isomorphic counterpart of the hydrogen-depleted ethene. Linear and cyclic 
polyenes, whose eigenvectors and eigenvalues were fully studied and were 
expressed in analytic formulas in ref. [15], are used as the starting point in this paper 
to show the elegance of our method. 
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Net sign analysis was proposed by Lee et al. [2] to study the topological proper- 
ties of Hiickel molecular orbital graphs. One of the important results of net sign 
analysis is the parallel relationship between the ordering of net signs and the order- 
ing of eigenvalues, especially for one-dimensional quantum systems [16]. Only par- 
tial agreement was found for two-dimensional systems [16,17]. It was pointed out 
that the Euclidean 3-dimensional hypercubes obey the parallel relationship rigor- 
ously [14]. For the purpose of the net sign analysis, it is necessary to have some ways 
to obtain the eigenvectors and eigenvalues without too complicated calculations. 
The strategy proposed in this paper seems to serve our purpose quite well. Besides, 
it is intriguing to trace out the graphical criteria for a graph to obey the parallel rela- 
tionship rigorously. 

This paper is composed as follows. A brief introduction of our method is given 
in section 2. A detailed description will be published elsewhere [13]. Applications of 
this method to graphs belonging to the special class of graphs such as steps, combs 
and torus are given in section 3. Results of net sign analyses of these graphs are 
also presented and discussed in section 3. Conclusions are drawn in section 4. 

2. M e t h o d  

The central theme of this general strategy is to obtain analytic expressions or 
generating formulas for the eigenvectors and eigenvalues of a special class of 
graphs which can be defined through some of operations, say direct products from 
a certain known graph whose eigenvectors and eigenvalues are well-studied. For a 
detailed description of this method, the reader is referred to ref. [13]. Only the 
essence of this method is briefly stated here. 

Let us start from the class of cyclic graphs which is familiar to most chemists 
and is a well-studied class of graphs whose eigenvectors and eigenvalues have ana- 
lytic expressions [15]. The adjacency matrix of the n-cycle graph C, is given by 

A ( c . )  = 

0 1 0 . . .  0 1 

1 0 1 . . .  0 0 

0 1 0 . . .  0 0 

0 0 0 0 1 

1 0 0 1 0 

(1) 

An interesting cyclic permutation exists between any two successive rows of the 
adjacency matrix A (Cn). A square matrix having the above property is called a cir- 
culant matrix or a circulant. Thus, 
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al 

an 

A = an-1 

a2 

a2 a3 . . .  an 

al a2 . . .  an-I 

an al . . .  an-2 

a3 a4 . . .  al 

(2) 

is a circulant, denoted by [[ax, a 2 , . . . ,  an]]. A theorem [18] concerning the eigenvec- 
tors and eigenvalues of a circulant A states that {V1, V2,... ,  Vn} is the complete 
set of eigenvectors of A, where Vk = (1,Xk,x2k,... ,X (n-1)k) and k = 0, 1 ,2 , . . . ,  
(n - 1), provided x = e i2~/n and i = v/-L--1. The corresponding eigenvalue Ak of 
eigenvector Vk is given by 

Ak = Z aix(i-1)k' (3) 
i 

Therefore, the class of cycles is a special case whose adjacency matrices are circu- 
lants having the form ofeq. (1). The kth eigenvector, Vk, of A(Cn) is expressed as 
Vk = (1, x k, x ~ ,  . . . , x(n-1)k), k = O, 1 , 2 , . . . ,  (n - 1). The corresponding eigenvalue 
Ak of the eigenvector Vk is 2 cos(2kn/n), which is the same as that obtained by Coul- 
son et al. [15] using a different method. 

A short remark should be made on the spectrum of a graph and the labelling of 
a graph before we proceed further. Different label assignments would certainly pro- 
duce different adjacency matrices. If A1 and A2 are adjacency matrices which arise 
from two different labellings of the same graph, then A1 = P-1A2P holds for 
some permutation matrix P. According to the theorem [19] which states that the 
spectrum o f  the characteristic polynomial o f  matrix A is the same as that o f  B - l A B ,  
where B is any nonsingular matrix, the spectrum of a graph is invariant with respect 
to the labelling of the graph. 

The class of graphs whose adjacency matrices are circulants are called step or cir- 
culant graphs [20]. A step graph, denoted by C,,(nl ,n2, . . . ,np)  and 
1 <nl  < n 2 <  . . .  < n p < ( n +  1)/2, is defined as a graph on n vertices, {vi, i = 1, 
2 , . . . ,  n), with the vertex vi adjacent to each vertex Vi±nj (mod n), where nj is called 
the jump size. Therefore, the set of eigenvectors can be written by corollary as 
{Vklk = 0, 1,2, . . .  ,n -- 1}, where Vk = (1,xk, x ~ , . . .  ,x (n-1)k) and x has the same 
meaning as mentioned earlier. The corresponding eigenvalue Ak of eigenvector Vk 
is given by 

Ak = 2 ~ cos(2ni~k/n) if n v ¢ n/2 (4a) 
p>~i>~ l 

and 

Ak = cos(2npnk/n) + 2 Z cos(2ni~k/n) 
p>i>~l 

if np = n/2 .  (4b) 

Thus, cycles of n vertices are special cases of step graphs with a single jump size of 
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1. Complete graphs, which are denoted by K,, are also special cases of step graphs 
with multiple jump sizes ranging from 1, 2 to [(n - 1)/2] where D c] is the greatest 
integer less than or equal t o f .  The kth element of the set of eigenvectors is written 
as Vk = (1,xk, x~ , . . . , x ( ' - l )k ) ,  where k = 0 , 1 , 2 , . . . , ( n -  1) and x has the same 
meaning as mentioned earlier, and the corresponding eigenvalue Ak is given by 

n -  1 i f k = O ,  
Ak = --1 if k ¢ 0 ,  (5) 

where the eigenvectors whose eigenvalues are equal to - 1 are n - 1 degenerate. 
Now let us define the Cartesian direct product of two graphs G1 and G2 by 

H =  G1 x G2. Consider any two vertices u--(ux,u2) and v =  (vl,v2) in 
U = U1 x U2, where U, U1 and U2 are the sets of vertices of H, GI and 6;2, respec- 
tively. Then u and v are adjacent in H when every [ul = vl and u2v)2 e E(G2)] or 
[u2 = v2 and u]vl ~ E(GI)] where E(G1) and E(G2) are the sets of edges of G1 and 
(72. The Cartesian product of Gl ----/(2 and (72 -- L3 is shown in fig. 1. Other exam- 
ples can be taken from the class of hypercubes, such as a square is the direct pro- 
duct of (K2 x K2) and a cube is the direct product of (square xK2). Assuming G1 
and (72 are graphs on rn vertices and n vertices, respectively, the adjacency matrix of 
the Cartesian product ofA (H) is defined as 

I,, ® A(G1) + A(G2) ® Ira, (6) 

where I, is a unit matrix of dimension n. The definition of the Kronecker product 
of two matrices is given in appendix A. 

If the set of eigenvectors and eigenvalues of graphs G1 are denoted by 
{Vii i= 1 ,2 , . . . ,m}  and {ai[i = 1 ,2 , . . . ,m}  and those of G2 by {V/I/= 1 ,2 , . . . , n}  
and {/3ili= 1,2 , . . . ,n} ,  then the set of eigenvectors of G1 x G2, {Wi[i = 1, 
2 , . . . ,  mn}, can be constructed easily from { Ui} of G1 and { Vi} of G2. Vi and Ui are 
1 × n and 1 x m row vectors and denoted by the coefficients on each vertex as 
[Vii V/~ • • • V/~] and [Ua U~2... U~], respectively. The elements of { IV/} are given by 

W(k_l)n+ j = Vj × U k = [Vii Uk, Vj2Uk, . . .  ' VjnUk] (7) 

L 5 
r s t (p,r) ( p , s ) ( p , t )  

I • • • • • 

P q 

K 2 • 

~r3 
_J 
X 
C'4 

~d 

(q,r) ( q , s ) ( q , t )  

Fig. 1. The Cartesian product of K2 and L3. 
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for m 1> k >t 1, n >~j ~> 1. The corresponding eigenvalues are given by 

• ~(k-1)n+j "~ Olk "4"- 3j" (8)  

The eigenvalues in eq. (8) were also obtained by Cvetkovi6 et al. in ref. [21], where 
they defined the graph sum corresponding to the Cartesian direct product in this 
paper. Now we can discuss the general feature concerning the eigenvalues and 
eigenvectors of graphs which can be obtained via some operations on the line 
graphs, circulant graphs and some well-studied graphs. Let us concentrate on the 
class of graphs whose adjacency matrices can be written in the following parti- 
tioned form: 

, ]  (9) 

where the off-diagonal block is an identity matrix of order n and C is the adjacency 
matrix of lines, circulants or well-studied graphs. The adjacency matrix in eq. (9) 
is the result of Cartesian product of a graph with/(2, the complete graph Of order 2. 
Applications of these formulas using cycles and lines as the starting point are pre- 
sented in the next section. 

3. Examples  

A hypercube is a special class of graphs which can be constructed by the direct 
product of a series of/(2, the complete graph of order 2. For example, an n-cube, 
H,,  is expressed as 

n times 

g ,  =~K2 x K2 x . . .  x g 2  . (10) 

The adjacency matrix of H,+l obeys the following recurrence relation: 

I 1  11/ H,+I = H ,  ' 

where I is the identity matrix of order n whose eigenvalues are 1. We have applied 
the method mentioned above to hypercubes. The eigenvalue set of H,  is composed 
by eigenvalues of n - 2i, where i = 0, 1 , . . . ,  n, and the degeneracy of each eigenva- 
lue is n! / (n  - i)!ik A binomial distribution was found to exist among the distribu- 
tion of eigenvalues. The eigenvectors can be easily constructed from a recurrence 
formula and can be expressed as 2" x 1 row vectors W ( H , )  = (W1,  W2), where 
W1, W2 are 2 "-l x 1 row vectors and W1 = +W2 [13]. Net sign analysis [14] 
revealed that a simple relation exists between net signs and eigenvalues of hyper- 
cubes, i.e., 

s i ( n , )  = 2n- l /~ i (nn) ,  (12) 
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where Si is the net sign of the edge-signed graph of the ith eigenvectors and, so far, 
the set ofhypercubes is found to be the first class of graphs which obeys rigorously 
the parallel relationship between net signs and eigenvalues, in addition to the one- 
dimensional quantum systems [ 16]. 

Annulus(n) 

Ladder(n) 

2 

Annulus (1) is a class of graphs which can be constructed by the direct product 
of cycles with K2. The adjacency matrix of the annulus, A(Annulus (n)), is given by 

A(Annulus(n) = [ A( C,) I ] 
I A(C,) " (13) 

The complete set of eigenvectors is { V,.li = 1 ,2 , . . . ,  2n} where n is the number of 
vertices of the constituent cycles and Vi can be expressed pairwisely by the eigenvec- 
tors of cycles { Wk}, i.e., 

{Vzk-1, Vz~} = {[W~WkI,[Wk -Wk]}, k =  1 , 2 , . . . , n .  (14) 

The corresponding eigenvalues are also written pairwisely by 

{A2k-l, Az~} = {1 + 2 cos(2krc/n), - 1 + 2 cos(2kn/n)}. (15) 

Net sign analysis of the class of annulusus leads to an expression of the net sign of 
the ith eigenvector of annulusus in terms of the net sign of the ith eigenvector of 
cycles, 

( S2i(Annulus(n) ), S2i-1 (Annulus(n))) = 2Si( Cn) :k n, (16) 

where " + "  and " - "  are for the in-phase and out-phase combinations in eq. (14), 
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respectively. Results of net sign analysis of the first five members of annulusus 
(see fig. 2) are presented in table 1. 

One can write down relationships for the ladder (2) as done for the annulus. 
Accordingly, one has for the adj acency matrix (cf. eq. (13)) 

A(Ladder(n))= [A(L~) I ] (17) 
A(L.) 

and the eigenvectors and the corresponding eigenvalues will be given as (cf. eqs. 
(14) and (15)) 

{Vzk-t, Vzk} = {[WkWkl,[Wk --Wk]}, k= 1 ,2 , . . . , n ,  (18) 

{Azk-1, A2k} -- {1 + 2cos(2kTr/n + 1), -1  + 2cos(2k=/n + 1)}, (19) 

respectively. In this case, Wk, k = 1 ,2 , . . . ,  n, are the eigenvectors of lines. Simi- 
larly, the net sign of the ith eigenvector of ladders is given by 

(S2,(Ladder(n)), $2i-1 (Ladder(n))) = 2S/(Ln) + n, (20) 

where the meaning of "+"  and " - "  is similar to that for the annulus. Results of 
net sign analysis of the first five members of ladders are presented in table 2. 

The above idea can be easily extended to the much more complicated graphs, 
such as grids and cylinders, for the study of their eigenvectors and eigenvalues. For 
example, an n x m rectangular grid is a direct product of/_,, x L,, and its adjacency 
matrix is given by 

• • 

o 

0 

/1\ 

'l'ii' il 
Q Q • 

\1/ 

C3xK2 C4xK 2 C5xK 2 C6xK 2 

Fig. 2. Graphs of the first four members of the class of annulusus. 
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Table 1 
Net signs and eigenvalues of first five members of the class ofannulusus. 

Cylinders Eigenvalues Net signs 

GxK2 

C4xK2 

CsxK2 

QxK2 

CT x K2 

3, 1,0, 0 , - 2 , - 2  

3, 1, 1, 1 , - 1 , - 1 , - 1 , - 3  

3, 1,1.62, 1.62,-0.38,-0.38 
-0.62, -0.62, -2.62, -2.62 

3, 1,2,2,0,0,0,0,-2, -2, 
- 1 , - 3  

3, 1,2.25, 2.25, 0.25, 0.25, 0.56, 
0.56, - 1.45, - 1.45, -0.80 
-0.80, -2.8, -2.8 

9,3, 1, 1 , -5 , -5  

12, 4, 4, 4, -4, -4, -4, 12 

15,5,7,7,-3 - 3 , -1 , -1 ,  
-11,-11 

18,6, 10, 0, 0, 0, 0,-10,-10,  
-6, -18 

21,7, 13, 13, -1, -1, 5, 5, 9, 
-9, -3, -3, -17, -17 

A ( G r i d ( n , m ) )  = 

-L. i 

i L~ I 

I Ln I 

°. 

0 

I 
x L. 

(21) 

Table 2 
Net signs and eigenvalues of first five members of the class of ladders. 

Ladders Eigenvalues Net signs 

Lz x K2 2,0,0,-2 4,0,0,-4 

/.3 x K2 2.41,0.41, 1,-1,-0.41,-2.41 7, 1 , 3 , - 3 , - 1 , - 7  

L4 × K2 2.62, 0.62, 1.62, -0.38, 10, 2, 6, -2, 
-0.38, - 1.62, -0.62, -2.62, 2, -6, -2, - 12 

L5 × K2 2.73,0.73,2,0, 1, -1, 13, 3, 9, -1,5, 
0, -2, -0.73, -2.73 1, -9, -3, -13 

L6 × K2 2.8,0.8,2.25,0.25, 16,4, 12,0, 
1.45, -0.56, 0.56, -1.45, 8, -4, 4, -8, 
-0.25, -2.245, -0.8, -2.8 0, -12, -4, -1'6 
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The net sign of the grid is given as 

S(k_On+j(Grid(n, m)) = Sk(Ln) × m + Sj(Lm) × n. (21a) 

Equation (20) is a special case ofeq. (21a) as m = 2 and Sk(L2) is either 1 or -1 .  A 
cylinder, Cylinder (n, m), is a direct product of n-cycle with m-line and its adja- 

Cn I 

x z o 

I C~ I 

*.. 

cency matrix is given by 

A(Cylinder(n,m))  = 

0 I 

z 

(22) 

"Ln I I 

I Ln I 0 

I Ln I 

0 ". 

I I Ln 

The net sign of the cylinder is given as 

S(k_l)n+j(Cylinder(n,m)) = Sk(Lm) x n + Sj(Cn) x rn. (22b) 

Equation (16) is a special case ofeq. (22b) as m = 2 and Sk(L2) is either 1 or - 1. 

4. Conc lus ions  

A general strategy was proposed to generate the eigenvectors and eigenvalues 
of some special classes of graphs from well- studied chemical graphs such as lines 
and cycles• Ladders and cylinders, constructed from the Cartesian products of lines 
and cycles with the complete graph of order 2, were used as examples to demon- 
strate this strategy. This strategy is currently applied to study the topological prop- 
erties of star graphs, spider graphs, and full binary trees. 

Net sign analyses of ladders and cylinders were performed. A simple expression 
of net sign for each molecular orbital of the product graph can be derived in terms 
of the constituent graphs in both cases. Ladders and cylinders also provide us 
classes of graphs which obeys rigorously the parallel relationship between the 
ordering according to net signs and the ordering according to eigenvalues. 
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A p p e n d i x  A 

KRONECKER PRODUCT OF TWO MATRICES 

F o r  a ma t r ix  A = [aij] of  d imens ion  m x n and  a ma t r ix  B = [b/j] o f  d imens ion  

p x q, the K r o n e c k e r  p roduc t  o f  two matr ices  A ® B = [cij] is def ined a ma t r ix  o f  

o rder  m p ×  nq with  elements  

£ ( i - l ) p + j ( t - 1 ) q + k  ~- a i k b j t  , 

where  i =  1 , 2 , . . . , n  and  t = 1 , 2 , . . . , m .  A @ B  can  thus  be wr i t ten  in the par t i -  

t ioned f o r m  as 

A ® B =  

al lB  a12B . . .  alnB ] 

a21B a22B . . .  a2nB [ . 

I 
L am l B am2 B . . .  amn B .] 
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